An Overview of The .NET
System.Random ‘Pseudo-Pseudo-RNG’

By Martin Rupp
SCIENTIFIC AND COMPUTER DEVELOPMENT SCD LTD

Any developer has probably already needed at least once to call a random function
during the development of a program or a library. Most programming languages
possess their own random generators.

Here we will study the System.Random.Rand RNG and how it behaves in terms of
randomness quality.

There are randomness tests such as DieHard or DieHarder. We do not wish to use
them to check the randomness properties of the RNGs of the aforementioned
programming languages. Instead we shall make some studies on our own.

Notions of entropy

Entropy in the context of randomness measures the frequency of occurrence of
characters, e.g “Shannon’s Entropy”.

If we use an alphabet with N symbols - say Ul'"" UNthen the Shannon entropy

H(X) of a “word”X is:
p—1

HX) == Y pLog,(pr)
i=0

https://en.wikipedia.org/wiki/Diehard_tests
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Where pi is the probability of appearance of the symbol Ui'

S

Here we will compute pi by its frequency, e.g pi = TL and Siis the amount of

occurences of the symboIUl, while S is the total amount of symbols in the word.

We also will consider that 0 * LogZ(O) = 0.

The Shannon Entropy is a positive number which may be used to measure the
randomness of a word. A maximal value for the entropy means that the word has “best”
randomness.

p—1

H(X) =— %;0 S Log (S /S)

The function f(x): X — — xLogZ(x)is concave , therefore we have the

following inequality:
) N—-1) N—-1
W L) <SG X x)
= i=

Or:
p—1 p—1

p—1
— =3 (5/)Log, (5 /S) <= (£ 5/S) * Log, (- % S/S
i=0 i=0 i=0
)

Which leads to:
H(x) = Log,(p)

This means that Logz(p)is the maximal value for the entropy of a word with p

symbols.

As an example , if we consider an alphabet with three letters ‘A’, ‘B’ and ‘C”, we have
the following values of Shannon entropy:

Word X Shannon Entropy H(X)
ABAABBBC — (3Log,(3/8) + 4Log,(4/8) + Log,(1/8))/8 =+ 1.4056
AAAAAAAA — 8Log,(8/8)/8 = 0
AAAAAAAC — 7(Log,(7/8)/8 + Log,(1/8)) =+ 0.5435

We will use the Shannon entropy to check the randomness property of the studied
RNGs.Usually we shall consider the bytes as “words” created from an alphabet with 256
values ranging from 0x00 to OXFF.

C# possess several random generation functions. The primary one is located in the

System.Random class. Others are provided by the
System.Security.Cryptography.RNGCryptoServiceProvider class or the

System.Security.Cryptography.RandomNumberGenerator. class.

Here we will focus on the first one since the other ones are considered as a “secure”
RNG and supposingly have (very) good randomness values.

Bruteforcing

The System.Random.Rand class uses an Int32 value as a seed. If the seed is broken
then of course the random generation is broken and generated numbers will be known

32
in advance. The amount of possible value for the seed is 2, which means it is

possible to bruteforce the RNG. All that is needed is to generate all possible seeds and
search the corresponding value in the table.

The RNG generates Int32 integers through the Next () function. If we store three

samples of the generator, we need to create a table of size 32*3*2°%pits. This is around
412 Gbytes.

The time needed to generate a random number with a seed is small, 1,000,000
generations are done in 6177 msecs on a slow Thinkpad machine equipped with a

32
Celeron CPU 1007U 1.50 GHz. So the whole time needed to generate the 2 possible

seedsis t = (232/106) *6.177 sec = 26530 sec. Thatis to say
approximately 7 hours.

Stopwatch sw = new Stopwatch();
sw.Start();
//Test of the Rand function

for (int 1 = 0; i < 1000000; i++)
{

Random r = new Random(i);
r.Next();

Console.Out.WriteLine("Time elapsed:"+sw.ElapsedMilliseconds);
The default built-in C# random generator isn’t obviously secure at all and can be easily

broken.

Constant values for some generated numbers

There are strange patterns in the RNG, for instance the third random number generated
will always be ‘84’ in certain conditions

for (int i = 0; 1 < 30; ++i)
int s1 =1 ;
var rnd_seed = new Random(sl);

var s2 = rnd_seed.Next();

var rnd = new Random(s2);

var outl = rnd.Next(200);
var out2 = rnd.Next(200);
var out3 = rnd.Next(200);
var out4 = rnd.Next(200);

Console.WritelLine(out1+"\t|"+out2 + "\t|" + out3 +
"\t|" + outd);
}

The output of the above program is the following:

172 136 84 151
58 129 84 189
144 122 84 28
30 115 84 66
116 108 84 104
2 102 84 142
88 95 84 180
174 88 84 18
60 81 84 56
146 74 84 94
31 67 84 133
117 60 84 171
3 53 84 9
89 46 84 47
175 40 84 85
61 33 84 123
147 26 84 161
33 19 84 199
119 12 84 38
5 5 84 76
91 198 84 114
177 191 84 152
63 184 84 190

In fact this is even worse as the third number is “almost” always the same for the
numbers generated by Next(Lim).

The following program shows this behavior:

for (int j = 0; j < 300; j++)
{

bool f = true;
var out_=0;

for (int i

{

0; i < 30; ++i)

int s1 = i;

var rnd_seed = new Random(sl);

var s2 = rnd_seed.Next();

var rnd = new Random(s2);

var outl = rnd.Next(j);
var out2 = rnd.Next(j);
var out3 = rnd.Next(j);
var outd4 = rnd.Next(j);

if (f == true)

{
out_ = out3;
f = false;
}
if (out_ != out3)
{
Console.WriteLine("seed="+j+ " XXX");
break;
}

}

Console.WritelLine("seed=

+ j + " out3=" + out_);

The output of that code shows how deeply flawed the RNG is.There is an obvious
relation between the third ‘random’ number generated and the seed...

Here it shows a relation between the third output of rnd(rnd(i). next()). Next(j) and j
where rnd(rnd(i). next()) is an instance of Rand generated by a seed equal to

rnd(i). Next() where i runs from 0 to 29, given the fact that this third output is a

common value to all the 29 values of the generator i.

seed

wo~slgunfwrRE o

out3

Wt ~I~Ighowvuubh R WWRMNRPMNBEREREREOOO

seed out3 seed out3 seed out3
120 50 180 76 270 114
121 51 181 76 271 114
122 51 182 77 272 115
123 52 183 77 273 115
124 52 184 XXX 274 116
125 XXX 184 78 275 116
125 53 185 78 276 XXX
126 53 186 78 276 117
127 53 187 79 277 117
128 54 188 79 278 117
129 54 189 80 279 118
130 55 190 80 280 118
131 55 191 XXX 281 119
132 XXX 191 81 282 119
132 56 192 81 283 XXX
133 56 193 81 283 120
134 56 194 82 284 120
135 57 195 82 285 120
136 57 196 83 286 121
137 58 197 83 287 121
138 58 198 XXX 288 XXX
139 58 198 84 288 122
140 59 199 84 289 122
141 59 200 84 290 XXX
142 60 201 85 290 123
143 60 202 85 291 123
144 XXX 203 XXX 292 123
144 61 203 86 293 124
145 61 204 86 294 124
146 61 205 86 295 XXX
147 62 206 87 295 125

Distribution of the values

We simply compute the distribution of the values of the RNG, we expect, of course, to
find a uniform distribution

Random r = new Random();

Int32[] values = new Int32[10000000];
Int32[] dist = new Int32[100000];

for (int i=0;i< 10000000; i++)

{

values[i] = r.Next(10000);
}
for (int j = @; j < 10000; j++)
{

int s = 0;

for (int 1 = 0; i < 100000; i++)

{

if (values[i]<j)
S++;

}

dist[j] = s;
}
String csv = "";
for (int j = @; j < 10000; j++)
{

csv = csv + j + "," + dist[j] + "\n";

Amount <n

2e+04 Ae+04 Ge+04 Be+04 1e+05

Ce+00

File.WriteAllText("dist.csv", csv);

We plot the csv file using CRAN-R.

myvalues <- read.csv("C:\\tmp\\dist.csv", header=FALSE, sep=",",
as.is=TRUE)
plot(myvalues,"n","Amount <n", col="blue")

Visually the distribution looks acceptable.

0 2000 4000 6000 8000 10000

Entropy study of the random byte generator

In terms of entropy, we compute the entropy of words generated by the byte generator
through the NextByte() function.

We generate a long word of around 1 Megabyte (1 million of symbols) by a
concatenation of the NextByte() values. and we compute its entropy.

We do this for a significant amount of seeds and we study the entropy distribution.

Obviously a good RNG should produce words with high entropy, “close” to the maximal

value ofL0g2(256) = 8.

We use the following function for computation of entropy:

private static double getEntropy(byte[] word)

{
int N = word.Length;

double H = 0;

for (int 1 = 9; 1 < 256; i++)
{
int s = 0;
for (int j = 0; j < N; j++)

{
if (word[j] == (byte)i)
S++;

// Console.Out.WriteLine("s="+s);
if (s > 9)
H += s * (Math.Log((double)Decimal.Divide(s, N)) / Math.Log(2));

// Console.Out.WriteLine("H=" + H);
}

return -H/N;

We compute the entropy of random words of 100,000 bytes generated by the RNG,

Random r = new Random();
Byte[] words = new Byte[100000];
double[] H_ = new double[1000];

for (int 1 = 9; 1 < 1000;i++)

{
r.NextBytes(words);
H_[i]=getEntropy(words);
Console.Out.WriteLine(H_[1i]);
}

The computation for 100 randomly generated words produces the following Shannon
entropy values:

7,99828624313363
7,9983153486654

7,99826771552547
7,99807405553931
7,99805543820311
7,99821652975896
7,99810917106913
7,99811157511275
7,99811341434992
7,99810028597774
7,99830879187033
7,99838178840981
7,99848442219811
7,99812782299489
7,99824164954725
7,99822417492894
7,99814410326633
7,99829296475336
7,99800195232145
7,99810369679359
7,99808926117266
7,99810137907029
7,99813371469752
7,99809154987319
7,9980257557848

7,9982985698453

7,99833829952274
7,99827823843699
7,99802448868977
7,99823705901078
7,99804521204064
7,99819151951271
7,99868654776436

7,99823032640388

7,9983113538283

7,99814346854661
7,99830150653076
7,99790805375961
7,99799533804699
7,99818076110388
7,99787877349106
7,9977097866743

7,99791685230915
7,9982608922564

7,99804017967301
7,99832384722511
7,99837614082797
7,99812882163527
7,9981454439674

7,99810280098585
7,99814425789982
7,9981309241144

7,99821857324085
7,99783047136812
7,99831770190317
7,99824457285042
7,99793249746241
7,99813493567317
7,99788682713365
7,99827764821462
7,99810480816228
7,99808903019212
7,99812002785753
7,9985477624685

7,99837260597397
7,99793490085075
7,99819087574906
7,99819587350322

/,99775169222549
/,99823239400712
7,99829822106673
/,99825392865045
/,99822097314874
7,99818245947268
/,99801869789196
7,99820063936121
/,99826131643008
/,99811643629185
7,99805649129511
/,99792144786888
/,99814589201522
/7 ,9982980808022

/,99801831209942
7 ,99814768836675
/,99828198884281
7,99832537174521
7 ,99807012779352
/,99838415062449
7,9981519910259

/,99825746185536
/,99807083027865
/,99807881676417
7,9980311556611

7,99809562427614
7,99804339079616
/,99795757906399
7,99827023134384
7,99832012644341
/,99820780227374
7,99782392679545

As we see the entropy values are all > 7.997, which is acceptable. We also get similar
results when generating the random words from a variating seed.

Conclusion: In this article, we have seen a few basic techniques to check the
randomness of a RNG. The built-in .NET System.Random.Rand RNG has no

security and must never be used for cryptography or anything involving a secret
number generation. It has an average and acceptable randomness even if
numbers - at a fixed rank - will almost always have the same values.

